Denitrification Plant Helps Tampa Bay Reduce Nutrient Pollution

April 3, 2018
Nutrient pollution is getting worse in many estuaries throughout the U.S., especially those on the heavily populated East Coast. That’s the finding of the National Oceanic & Atmospheric Administration (NOAA) in its July 2007 report, “Effects of Nutrient Enrichment in the Nation’s Estuaries: A Decade of Change.” Nutrients such as phosphorus and nitrogen trigger algae blooms and reduce the amount of life-giving oxygen in the water. The report said the increased nutrient loading is linked to human activities upstream from estuaries. Nevertheless, NOAA also noted that some of the nation’s estuaries have shown significant improvement in reducing nutrient pollution. One of those waterways, the Tampa Bay, Fla. Estuary, has long implemented a program of aggressive nutrient management that has reversed the trend of increased nutrient pollution. Since 1978, the estuary has benefited from the use of a denitrification system that reduces nitrate-nitrogen (NO3-N) and suspended solids (SS) to meet stringent government standards at the Howard F. Curren Advanced Wastewater Treatment Plant — the world’s largest denitrification plant. The plant utilizes a TETRA Denite denitrification system from Severn Trent Services, which was first installed in 1979 and expanded in 1986. The fixed-film biological denitrification process removes NO3-N and SS in a single treatment step. The system can also be integrated with other plant treatment processes to provide superior total nitrogen (TN) and phosphorus removal. Denite is used as the final treatment step in a total nitrogen removal process to help a facility meet stringent TN discharge limits of less than 3 mg/L. The improvement in filtered effluent quality of the large flow from the plant has been a documented factor in the revitalization of Tampa Bay over the last few decades. Sea grasses and sport fish have returned to once-barren areas of the waterway. Ten years of effluent data (1997–2006) reveal the following results: average flow of 55.43 mgd; biological oxygen demand (BOD) of 2.52 mg/L; TN of 2.46 mg/L; and total suspended solids (TSS) of 0.93 mg/L. The Denitrification Process The Howard F. Curren Plant, the only wastewater treatment plant in the Tampa area, receives waste from the city of Tampa and parts of Hillsborough County. Incoming wastewater contains approximately 200 ppm BOD, 200 ppm SS and 40-45 ppm total Kjeldahl nitrogen (TKN). Effluent standards are 5 mg/L (or ppm) CBOD, 5 ppm TSS and 3 ppm TN. The plant has received a variance on total phosphorus (TP), as Eastern Tampa Bay is the largest U.S. depository of “bone rock,” which is used for fertilizer production and is the cause of background TP in the bay. The plant’s first treatment step is odor control, which is accomplished with an odor control spray tower that uses bleach to reduce sulfur dioxide. Screen and grit removal is then performed in two side-by-side buildings. The sugar sand prevalent in Florida’s raw wastewater is removed in concrete tanks, where sand and grit slurry is pumped to Dorr Oliver cyclone separators and grit washers, then to trucks that take the grit to a landfill. These buildings also contain Hycor all stainless steel, self-cleaning screens with approximately two mm gaps to remove larger particles. The wastewater then goes to rectangular primary clarifiers to achieve approximately 30% BOD removal and 60% SS removal. The sludge from the primary clarifiers flows to anaerobic digesters where the methane gas is recovered to power the plant’s generators. Wastewater is pumped to the high purity oxygen (HPO) basins where oxygen from two cryogenic plants (an 80 ton/day and a 60 ton/day) is injected into the annulus of covered basins, and 24 slow-speed mixers continue the BOD removal process. The wastewater then flows to another set of rectangular intermediate clarifiers, and secondary sludge from the carb final tanks (CFTs) is thickened and pumped into the anaerobic digesters with the settled primary sludge. Digested sludge is then dewatered on 2-meter belt presses and heat dried or land applied. The resulting filter cake is elevated to a gas-fired kiln where the biosolids are turned into pellets, stored and eventually sold for fertilizers. After exiting the intermediate clarifiers, the wastewater flows to nitrification basins where compressed air is introduced at the basin bottoms through fine bubble Sanitaire diffusers. The nitrification process is completed when the ammonia nitrogen is converted to soluble NO3-N. After final clarification in rectangular clarifiers, methanol is added to the wastewater stream as it enters the Denite filters. NO3-N levels are often in the 20-30 ppm range as belt press filtrate also is combined with the filter feed. Filter backwash is returned to the HPO reactors. The Denite filters remove TSS and NO3-N in one step. Filtered effluent then flows to reaeration and disinfection basins where chlorine is introduced. Sulfur dioxide is added to dechlorinate the wastewater after it goes over the weir before it is piped less than one mile to Old Hillsborough Bay. As testament to the effluent’s purity, bottlenose dolphins frequently can be seen swimming right at the discharge point.

Sponsored Recommendations

Benefits of Working with Prefabricated Electrical Conduit

Aug. 14, 2024
Learn how prefabrication of electrical conduit can mitigate risk, increase safety and consistency, and save money.

Chemical Plant Case Study

Aug. 14, 2024
Chemical Plant Gets a Fiberglass Conduit Upgrade

Electrical Conduit Cost Savings: A Must-Have Guide for Engineers & Contractors

Aug. 14, 2024
To help identify cost savings that don’t cut corners on quality, Champion Fiberglass developed a free resource for engineers and contractors.

Energy Efficient System Design for WWTPs

May 24, 2024
System splitting with adaptive control reduces electrical, maintenance, and initial investment costs.