Chemical treatment, biological treatment, and combinations of both are common methods for removing phosphorus in a wastewater treatment plant (WWTP). When using chemical treatment, metal salts that react with soluble reactive phosphate (i.e., orthophosphate) are added to form solid precipitates that are removed by physical processes such as clarification and filtration. The required chemical dosing rate depends on factors such as the targeted effluent phosphorous concentration, the influent phosphorus load and the amount of phosphorus that is being removed biologically.
The city of Black River Falls, Wisc., used chemical treatment with ferric chloride (FeCl3) to achieve its effluent total phosphorus (TP) permit of 1.0 mg/L. Historically, the chemical dosing rate was manually adjusted on a daily basis based on the measured effluent TP concentration. Besides the required manual labor, this method did not account for changes in influent loading, biological update or change in dosing requirement during weekends and holidays.
The plant was upgraded with an Oscar process performance optimizer control system with phosphorus controller, which uses continuous measurement of orthophosphate using a YSI IQ SensorNet P700 analyzer to automatically adjust the chemical dosing rate to maintain a desired effluent TP concentration without overdosing.
Plant Data
Phosphorus removal at Black River Falls WWTP was monitored with weekly measured influent TP concentration, and effluent TP concentrations were measured five days per week using laboratory wet-chemistry analysis. The chemical dosing rate was logged daily. Baseline data were gathered for one year prior to updating the plant. After upgrading with the Oscar system, the phosphorus removal and chemical consumption was measured for an additional year.
Phosphorus Control System
Using the Oscar system with phosphorus controller, the chemical dosing rate was continuously adjusted based on the real-time effluent orthophosphate concentration. The target effluent TP concentration was set to 1.0 mg/L.