Capital Controls UV

Dec. 28, 2021

Utilities and businesses require more effective water treatment technologies to meet evolving regulatory requirements. UV AOP efficiently treats a range of contaminants in various concentrations. 

In the UV advanced oxidation process (UV AOP), UV light interacts with an oxidant to produce hydroxyl radicals that oxidize harmful compounds. Hydrogen peroxide, the most common oxidant, is injected upstream of the UV reactor in smaller concentrations for drinking water and typically larger concentrations for groundwater remediation. Pretreatment is often unnecessary, although metals such as iron and chromium may need to be removed.

Additionally, UV AOP is a vital technology wastewater treatment for potable reuse. However, chlorine may be more efficient at a lower pH treating RO permeate for potable reuse or with lower pH groundwater.

The cost-effectiveness of UV AOP is based on water quality, principally how well UV light travels through water. A computer model can simulate performance depending on water quality data, objectives, and other parameters. Additionally, a bench-scale design test or on-site pilot can treat a representative water sample to determine the best size and oxidant concentration for the full-scale design.

The most cost-effective contaminants for UV AOP include N-Nitrosodimethylamine (NDMA), 1,4-Dioxane, and vinyl chloride, and chlorinated solvents such as trichloroethylene (TCE).

UV AOP can also remove the taste and odor contaminants in drinking water and contaminants of emerging concern (CECs). UV AOP can mineralize contaminants to carbon dioxide, water, and mineral acids, yet the oxidation products of UV AOP are readily biodegradable and pose no toxicity or regulatory problems.

UV reactors are also used for drinking water disinfection. The design may include upsizing the reactor with two settings for disinfection and taste/odor control with hydrogen peroxide.


In some applications, a hybrid treatment system composed of UV AOP combined with traditional technologies such as GAC may prove most efficient. Expertise in various water technologies is essential. A trusted partner can examine treatment options and find the best solution when considering UV AOP technology.

Click to learn more

Editor's Note: Scranton Gillette Communications and the SGC Water Group are not liable for the accuracy, efficacy and validity of the claims made in this piece. The views expressed in this content do not reflect the position of the editorial teams of Water & Wastes Digest, Water Quality Products and Storm Water Solutions.

Sponsored Recommendations

2024 Manufacturing Trends Unpacking AI, Workforce, and Cybersecurity

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

State of Smart Manufacturing Report Series

April 25, 2024
The world of manufacturing is changing, and Generative AI is one of the many change agents. The 2024 State of Smart Manufacturing Report takes a deep dive into how Generative ...

ArmorBlock 5000: Boost Automation Efficiency

April 25, 2024
Discover the transformative benefits of leveraging a scalable On-Machine I/O to improve flexibility, enhance reliability and streamline operations.

Blower Package Integration

March 20, 2024
See how an integrated blower package can save you time, money, and energy, in a wastewater treatment system. With package integration, you have a completely integrated blower ...
DeNoraDiscoverMore_logo
Directory

De Nora

May 25, 2022