MWRD studying use of floating plants for wastewater treatment

Nov. 2, 2023
Researchers at the O’Brien Water Reclamation Plant are studying the feasibility of phytoremediation with artificial floating islands filter nutrient pollution in wastewater and surface water streams.

Scientists at the Metropolitan Water Reclamation District of Greater Chicago (MWRD) are assessing the potential of using plants to filter unwanted pollutants from wastewater and surface water streams, according to an MWRD press release.

The MWRD researchers at the O’Brien Water Reclamation Plant in Skokie, Illinois are studying the feasibility of phytoremediation, a process where plants are used as a tool to clean contaminated environments. Wetland plants can help prevent wind, rain, and groundwater flow from carrying contaminants away from one site to another or deeper underground, but the plants can also clean up a variety of contaminants like metals, pesticides and oil in water itself.

“We already use microorganisms for the majority of our nutrient sequestration,” said MWRD Commissioner Eira Corral Sepúlveda “It makes sense to investigate other organisms that could help with the wastewater treatment process, and at the same time, try to reduce our carbon footprint. Here we can provide multiple benefits.”

These valuable plants can also address nutrient pollution. Phytoremediation with aquatic plants or Artificial Floating Islands (AFIs) is one strategy that could be used to reduce nutrient pollution. However, more testing is needed before it is widely used. Aquatic plants can be cultivated directly in wastewater, and AFIs are hydroponic systems where wetland plants are suspended by a floating raft in wastewater. In both cases, the plants and bacterial communities attached to their roots consume phosphorus and nitrogen, resulting in cleaner water, and plant growth that can be harvested and utilized, transplanted, or kept in place.

“Phytoremediation represents a real opportunity to better manage nutrients and other forms of pollutants in water,” said MWRD President Kari K. Steele. “I applaud our Monitoring and Research Department for taking the lead on these studies that can make a broader impact on our water environment and the way we address nutrient runoff and contaminants in wastewater treatment.”

Duckweed, the smallest flowering plant known to exist, and several wetland species in AFIs can remove nitrogen and phosphorus from treated wastewater and could possibly further reduce the nutrient load to receiving waters. The next step will be to further explore at pilot scale and then scale up the technology, testing how the process could work outdoors exposed to extreme realities of the Chicago climate.

Once the field test phase is completed, a comprehensive analysis will be conducted to evaluate both its environmental impact and the practical operational considerations. This holistic assessment will provide valuable insights into the technology’s real-world potential and pave the way for its broader implementation.

Sponsored Recommendations

Benefits of Working with Prefabricated Electrical Conduit

Aug. 14, 2024
Learn how prefabrication of electrical conduit can mitigate risk, increase safety and consistency, and save money.

Chemical Plant Case Study

Aug. 14, 2024
Chemical Plant Gets a Fiberglass Conduit Upgrade

Electrical Conduit Cost Savings: A Must-Have Guide for Engineers & Contractors

Aug. 14, 2024
To help identify cost savings that don’t cut corners on quality, Champion Fiberglass developed a free resource for engineers and contractors.

Energy Efficient System Design for WWTPs

May 24, 2024
System splitting with adaptive control reduces electrical, maintenance, and initial investment costs.